US009116958B2

a2z United States Patent (10) Patent No.: US 9,116,958 B2
Cormode et al. (45) Date of Patent: Aug. 25, 2015
(54) METHODS AND APPARATUS TO SAMPLE ;,‘2‘82,?;2 g%: lggg?g PDOI_TllaranSki etal. ... 37(7) /1243%
,295, ALY e
DATA CONNECTIONS 2003/0225549 Al* 12/2003 Shayetal. 702/182
. 2012/0110331 Al* 5/2012 Falketal. ... 713/168
(71) Applicant: AT&T Intellectual Property L, L.P.,
Atlanta, GA (US) OTHER PUBLICATIONS
(72) Inventors: Graham Cormode, Morristown, NJ 2A6ndzo(;l 11 le t;:)" I_S;geammg Algorithms via Precision Sampling”, Apr.
(I{S); Edith Cohen, Palo Alto, CA (US); Babcock et al., “Sampling From a Moving Window Over Streaming
Nicholas Geoffrey Duffield, Summit, NJ Data”, 2002, pp. 1-2.
(as) Braverman et al., “Optimal Sampling from Sliding Windows”, 2009,
pp. 1-13, USA.
(73) Assignee: AT&T INTELLECTUAL PROPERTY Sohenf fttal., “;ATlgOf{IiiﬂgnCS)a?dz Al;iszti6m%00r; for zﬁcclljra[tjesilmmariza-
ion of Internet Traffic”, Oct. 24-26, , pp- 1-14, .
L, L.P.. Atlanta, GA (US) Cohen et al., “Sketching Unaggregated Data Streams for Subpopula-
. tion-Size Queries”, Jun. 11-14, 2007, pp. 1-10, China.
(*) Notice: Subject. to any dlsclalmer,. the term of this Cohen et al., “Summarizing Data using Bottom-k Sketches”, Aug.
patent is extended or adjusted under 35 12-15, 2007, pp. 225-234, USA.
U.S.C. 154(b) by 216 days. Cohen et al., “Tighter Estimation using Bottom-k Sketches”, Aug.
24-30, 2008, pp. 1-17, New Zealand.
(21) Appl. No.: 13/708,756 (Continued)
(22) Filed: Dec. 7, 2012 Primary Examiner — Baoquoc N To
(65) Prior Publication Data (274) AzzgrneytLégenz, or Firm — Hanley, Flight &
immerman,
US 2014/0164392 Al Jun. 12, 2014
SO Int.C1 57 ABSTRACT
(1) Int. CI. Methods, apparatus, and articles of manufacture are disclosed
GO6F 17/30 (2006.01) : . .
(52) US.Cl tc1) sarélﬁle s.1g1.1ed1 Véel'%hteq f;lpdatefsi. E)l((ample meth?ids .dllls-
T) closed herein include 1dentifying a first key associated with a
CPC ... GOGF 17/3048 (2013.01); GO6F 123)/133030?7 data update obtained by sampling a stream of data received
. . . (01) from a plurality of nodes in a network, the first key being
(58) Field of Classification Search representative of a first node in the plurality of nodes, adjust-
CPC e GO6F 17/3048 ing a first value associated with the first key based on a weight
USPC .. 707/690 aSSOClated Wlth the data update, the Welght belng pOSlthe
See application file for complete search history. when the data update corresponds to opening of a new data
(56) References Cited connection with the first node, the weight being negative

U.S. PATENT DOCUMENTS

5,881,051 A *
7,013,252 BL*

3/1999 Arrowood et al. 370/248
3/2006 Shihetal.ccoooerrinnnn 703/14

100
N\

1ST NODE

130

2ND NODE

MONITOR

when the data update corresponds to closing of an existing
data connection with the first node, and estimating a status of
the first node based on the first value.

20 Claims, 6 Drawing Sheets

162

NEIGHBOR
NODE

NTH NODE

US 9,116,958 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Cormode et al., “Summarizing and Mining Inverse Distributions on
Data Streams via Dynamic Inverse Sampling”, Jul. 2005, pp. 1-28,
DIMACS Technical Report Nov. 2005.

Estan et al., “New Directions in Traffic Measurement and Account-
ing: Focusing on the Elephants, Ignoring the Mice”, 2002, pp. 1-42,
USA.

Frahling et al., “Sampling in Dynamic Data Streams and Applica-
tions”, Jun. 6-8, 2005, pp. 1-8, Italy.

Gemulla et al., “A Dip in the Reservoir: Maintaining Sample Synop-
ses of Evolving Datasets”, Sep. 12-15, 2006, pp. 1-12, Korea.
Gemulla et al., “Maintaining Bernoulli Samples over Evolving
Multisets”, Jun. 11-14, 2007, pp. 1-10, China.

Gibbons et al., “New Sampling-Based Summary Statistics for
Improving Approximate Query Answers”, 1998, pp. 1-12.

Gibbons et al., “Estimating Simple Functions on the Union of Data
Streams”, 2001, pp. 281-290, Greece.

Hoffman et al., “Streaming Algorithms for Data in Motion”, 2007,
pp. 1-11.

Jowhari et al., “Tight Bounds for Lp Samplers, Finding Duplicates in
Streams, and Related Problems”, Jun. 13-15, 2011, pp. 49-58,
Greece.

Manku et al., “Approximate Frequency Counts over Data Streams”,
2002, pp. 1-12, China.

Bengt Rosen, “Asymptotic Theory for Successive Sampling with
Varying Probabilities without Replacement, I, The Annals of Math-
ematical Statistics, 1972, vol. 43, No. 2, pp. 373-397.

Jeffrey Scott Vitter, “Random Sampling with a Reservoir”, Mar.
1985, ACM Transactions on Mathematical Software, vol. 11, No. 1,
pp. 37-57.

* cited by examiner

U.S. Patent Aug. 25, 2015 Sheet 1 of 6 US 9,116,958 B2

100
N\

162
160~ | | | |
NEIGHBOR
NODE
132 142 152
X1 I X 1 150~ | | |
1ST NODE 2ND NODE . NTH NODE
A
130—/ 140—/

110

MONITOR

FIG. 1

U.S. Patent Aug. 25, 2015 Sheet 2 of 6 US 9,116,958 B2

110
* UPDATE STREAM

204 —~
i —230
DATA PORT
» COUNTER (C)
210 —~ !
— 240
SAMPLER [€
» CACHE (S)
220 — ' ,— 202
2
SAMPLE /=250

ANALYZER CACHE

"| CONTROLLER

A

270 —
' _— 260
ESTIMATOR [« - Eﬁk‘ﬂ%@'\é‘
GENERATOR
v
ESTIMATES

FIG. 2

U.S. Patent

Aug. 25,2015

G e

320

g

Y

SAMPLED UPDATE \ NG

ASSOCIATED WITH A

Sheet 3 of 6 US 9,116,958 B2

KEY i IN CACHE §7? /

330 ~

YES

Y

NO

ADJUST COUNT C;
CORRESPONDING TO KEY i
BASED ON RECEIVED
WEIGHT OF SAMPLED

UPDATE

340 —

\ 4

ADJUSTED COUNT C;

1 370

ADD KEY
ICORRESPONDING TO
SAMPLED UPDATE
TO CACHE?

YES

v y4au 380

ADD KEY ASSOCIATED

\\ NO
LESS THAN OR > WITH SAMPLED UPDATE
EQUAL TO ZERO? / TO CACHE
YES
350 — v
REMOVE KEY i FROM
CACHE >
355 —~ v
NO / CALCULATE
\\ ESTIMATE?
YES
— 360

USE CACHED KEYS i TO
ESTIMATE STATUS OF

SYSTEM

FIG. 3

U.S. Patent Aug. 25, 2015 Sheet 4 of 6 US 9,116,958 B2

START

410\

DETERMINE SAMPLING
THRESHOLD (INVERSE OF
SAMPLING RATE)

420 — l

GENERATE RANDOM
NUMBER VARIABLE BASED
ON INVERSE OF SAMPLING

RATE

440 N\

DO NOT ADD A KEY
CORRESPONDING TO
THE SAMPLED UPDATE
TO THE CACHE S

430 \ v

IS RANDOM NUMBER
VARIABLE LESS THAN
WEIGHT?

YES

450 —\

ADD A KEY CORRESPONDING
TO THE SAMPLED UPDATE
TO THE CACHE S AND
ADJUST COUNTER BASED ON
WEIGHT

END

FIG. 4

U.S. Patent

520 -\

Aug. 25, 2015 Sheet 5 of 6

DO NOT ADD A KEY
CORRESPONDING TO
THE SAMPLED UPDATE
TO THE CACHE S

550 N\

ADD A KEY
CORRESPONDING TO
THE SAMPLED UPDATE
TO THE CACHE S

START

510—\

IS THE UPDATE
WEIGHT GREATER
THAN ZERO?

YES

530 —\

US 9,116,958 B2

SET THE SAMPLING
THRESHOLD FOR THE KEY
ASSOCIATED WITH THE
SAMPLED UPDATE TO ZERO
AND THE COUNT EQUAL TO
THE UPDATE

540 N\ l

NUMBER OF KEYS IN
GREATER THAN
MAXIMUM (M)?

YES

560 —\

ADD A KEY CORRESPONDING
TO THE SAMPLED UPDATE
TO THE CACHE S
AND REMOVE ONE KEY
FROM THE CACHE

END

FIG. 5

U.S. Patent Aug. 25, 2015 Sheet 6 of 6 US 9,116,958 B2

|
628
| Vil MASS/_
|| RANDOM ™| STORAGE
ACCESS |e»
| MEMORY
H
| " <622 /0%
INPUT
| o6 DEVICE(S)
| L l
READ ONLY —620
| | MEMORY ikt
R 618_\4—» INTERFACE [<———
| 612 v 624 |
OUTPUT
: PROCESSOR DEVICES) :
LOCAL <>
| MEMORY |
| _k\ 613 |
N—632

FIG. 6

US 9,116,958 B2

1
METHODS AND APPARATUS TO SAMPLE
DATA CONNECTIONS

FIELD OF THE DISCLOSURE

This disclosure relates generally to sampling, and, more
particularly, to methods, apparatus, and articles of manufac-
ture to sample data connections.

BACKGROUND

Random sampling is a tool that can be used to facilitate
working with large datasets. For example, through random
sampling, querying of a full dataset can be replaced by que-
rying of a smaller (and hence easier to store and manipulate)
sample of the full dataset. A random sample constitutes a
summary obtained by randomly sampling the data in the full
data set such that the summary can be used to represent the
full dataset.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example data system
including an example monitor constructed in accordance with
the teachings of this disclosure.

FIG. 2 is a block diagram of an example implementation of
the monitor of FIG. 1.

FIG. 3 is a flow chart representative of example machine
readable instructions that may be executed to implement the
example monitor of FIGS. 1 and/or 2.

FIG. 4 is a flow chart representative of a first example of
machine readable instructions that may be used to implement
a portion of the example machine readable instructions of
FIG. 3 that may be executed to implement the monitor of FIG.
2.

FIG. 5 is aflow chart representative of a second example of
machine readable instructions that may be used to implement
a portion of the example machine readable instructions of
FIG. 3 that may be executed to implement the monitor of FIG.
2.

FIG. 6 is ablock diagram of an example processor platform
to execute the instructions of FIGS. 3, 4, and/or 5 to imple-
ment the example monitor of FIGS. 1 and/or 2.

DETAILED DESCRIPTION

Example methods, apparatus, and articles of manufacture
disclosed herein present a stream sampling method that can
handle signed weighted updates. Previous techniques of
stream sampling are limited in that they consider unweighted
samples or weighted samples having only positive weight. In
the illustrated examples presented herein, signed weighted
updates of a sample, whether positive or negative, are ana-
lyzed and appropriate sampling thresholds for bounding the
number of samples stored in a cache are established to gen-
erate an estimate for a characteristic of a full dataset.

Prior sampling techniques of large datasets focused on a
random access model where the data is static and disk resi-
dent. However, in modern applications received data is gen-
erally not static, but rather is constantly changing. Thus, the
data in such applications can be defined as a stream of trans-
actions, where each transaction modifies the current state of
the data.

For example, such a data stream can correspond to a
sequence of financial transactions, each of which updates an
account balance. In such examples, it may be desirable to be
able to maintain a sample over current balances, which

10

15

20

25

30

35

40

45

50

55

60

65

2

describes the overall state of the system, and to use the sample
to provide a snapshot of the system against which to quickly
test for anomalies without having to traverse the entire
account database.

As another example, such a data stream can correspond to
records that are inserted in and/or deleted from tables of a
database. An example database management system may
keep statistics on each attribute within a table, to determine
what indices to keep, and how to optimize query processing.
Currently, deployed systems track only simple aggregates
online (e.g. number of records in a table), and more complex
statistics involve a complete scan of the database, which may
be unsuitable for (near) real-time systems.

As yet another example, such a data stream can represent
network activities at a number of nodes of the network. For
example, such network activities could include setting up
and/or tearing down data connections, from which an identi-
fication can be made of whether the data connections are
active or have been terminated. In some examples, other
characteristics of the data connections can be additionally or
alternatively tracked. Such example characteristics may
include, but are not limited to, the number of file transfer
protocol (FTP) connections currently in a network, the num-
ber of connections to a particular region, the number of con-
nections lasting longer than a particular time (e.g., an hour),
etc. It may not be practical for a service provider of a network
or data system to centrally keep a complete list of all current
open and active connections and/or other network character-
istics. Instead, example methods, apparatus, and articles of
manufacture (e.g., storage media) for random sampling as
disclosed herein can draw a random sample of the connec-
tions from which the service provider can determine statis-
tics, for example, on quality of service, round-trip delay,
nature of traffic in the network, etc. Such example statistics
may be used, for example, to show that agreements between
the service provider and its customers are being met, and/or
may be used for traffic shaping and planning purposes, etc.

Example methods, apparatus, and articles of manufacture
disclosed herein perform random sampling of a data stream in
which each data entry of the stream includes a positive or
negative update weight A associated with one or more keys, 1.
The keys, i, of the data stream represent respective informa-
tion elements for which one or more characteristics can be
estimated from information provided via the data stream. For
example, the keys, 1, of the data stream can represent respec-
tive different network nodes of a network, different customers
whose transactions are stored in a database, different tables or
addresses of a database, etc. As such, the keys i represent
elements (such as network nodes, etc.) whose characteris-
tic(s) can be monitored using information obtained via the
sampled data stream.

In the illustrated examples, samples (e.g., messages) are
taken from the data stream that include (or can be mapped to)
a key identifier i and corresponding update value A. The
example key identifier i of the sample is used to determine that
the sample is associated with a key 1, stored in the cache. The
update value A represents a change to a data characteristic of
the key i (e.g., a data connection at a corresponding node
opened).

In the illustrated examples provided herein, the data to be
sampled is a stream of updates of the form (i, A), where i
identifies a particular key to be sampled and AER, where R is
the set of real numbers. In the illustrated examples, a value v,
otfkey is initially O and is modified by subsequent updates, but
aggregate values of the keys do not become negative. For-
mally, the value ofkey i is initially v,_, and after update (i, A),
becomes:

vye—max{0,v+A}.

US 9,116,958 B2

3

Some example methods, apparatus, and articles of manu-
facture disclosed herein maintain an example cache S ofkeys
being monitored and an example count ¢, for each cached key
iES. In some examples, a sampling threshold T, correspond-
ing to the inverse of a sampling rate q (i.e., T=1/q), is used to
determine the number of keys to be kept in the cache S. When
an instance of a key i is sampled, if i€S (i.e., the sampled
instance is associated with a key 1 that is in the cache S), the
example counter is adjusted based on the update weight A of
the key i. If the key i is not in the cache S, then the key 1 may
be added to the cache S based on the update weight A and the
sampling threshold .

In some examples, a bounded sized cache is implemented
by cache S that is to store counts c, for at most k keys. Such
example methods, apparatus, and articles of manufacture dis-
closed herein strive to keep the cache S at full capacity of k
keys. In some such examples, an effective sampling threshold
for entering the key i into the cache S varies. For example, the
sampling threshold may increase after processing a sample
associated with a key having a positive update but decrease
after processing a sample having a negative update. In some
such examples, when one or more negative update(s) cause
removal of a key from the cache S so there are fewer than k
cached keys, the effective sampling threshold becomes zero.
In some examples, the count c, of each corresponding cached
key i is adjusted based on an adjustment (e.g., an increase) to
the sampling threshold T (e.g., T+c,). Such example methods,
apparatus, and articles of manufacture described herein pro-
vide unbiased estimates with bounded variance as a function
of the effective sampling rate.

FIG. 1 is a block diagram of an example data communica-
tion system 100 including an example monitor 110 con-
structed in accordance with the teachings of this disclosure.
The example data communication system 100 may be a net-
work (e.g., a wide area network (WAN), a local area network
(LAN), a cellular network, the Internet, a service provider
network, etc.), a database, etc. The example data communi-
cation system 100 includes the example monitor 110, an
example first node 130, an example second node 140, an
example Nth node 150, and an example neighbor node 160.
The example Nth node 150 represents a total number of nodes
N monitored by the example monitor 110. In the illustrated
example of FIG. 1, the neighbor node 160 is a neighbor node
to the second node 140, such that the monitor 110 can only
monitor the neighbor node 160 via the second node 140.

In the illustrated example of F1G. 1, each of the nodes 130,
140, 150, and 160 include data connection ports 132, 142,
152, and 162, respectively. In the illustrated example of FIG.
1, the example nodes 130, 140, 150, and 160 may be one or
more of a router, gateway, user endpoint, and/or any other
type of communication device. In some examples, the
example nodes 130,140, 150, and 160 are databases, database
locations, and/or database addresses. In some examples, the
example nodes 130, 140, 150, and 160 may be members of a
monitored group having a number of characteristics (e.g.,
network connection statistics, financial statistics, etc.) that are
being tracked.

In the illustrated example of FIG. 1, the example monitor
110 seeks to estimate the number of open data connection
ports and/or active data connections of the communication
system 100. In some examples, the example monitor 110
additionally or alternatively tracks other characteristics of
data connections (e.g., connection type, source or destination
locations, length of time, etc.). In the illustrated example of
FIG. 1, the example data connections 132, 142, 152, and 162
are designated as active/open when marked with an ‘X’ and
inactive/available when not marked with an ‘X’. For example,

20

30

40

45

55

4

the first node 130 has two available connections, the second
node 140 has two available connections (one active marked
by an ‘X’ and one connected to the neighbor node 160), the
Nth node 150 has four available connections, and the neigh-
bor node 160 has four available connections. In some
examples, the neighbor node 160 may be combined with the
second node 140 yielding a combination of six available
connections.

The example monitor 110 of FIG. 1 receives a stream of
updates from the first node 130, the second node 140, and the
Nth node 150 and samples the updates at a sampling rate q
(e.g., one out of every ten received updates are sampled). In
the illustrated example, the example updates are received
from the nodes 130, 140, 150 corresponding to data represen-
tative of the data connections 132, 142, 152, respectively. The
updates include update information (i, A) where i identifies a
corresponding node associated with the sampled update and
A represents the update weight. In some examples, the
updates include update information for any set of the data
connections 132, 142, 152, 162. For example, the update
weight A can represent a change in the status of the example
data connections 132, 142, 152. For example, if one of the
data connections 132 is opened, then the update weight is a
positive one (A=+1). In another example, if the two active data
connections of the data connections 132 close, the update
weight is a negative two (A==2).

In some examples, the update information (i, A) includes or
is accompanied by data connection characteristics (e.g., the
type of data connection that was established or that was
ended, the start and/or end time of a data connection, location
information of the source and/or destination of the data con-
nection, etc.).

The example monitor 110 of FIG. 1 caches values repre-
sentative of a number of activities and/or characteristics of
interest, hereinafter referred to as keys, from the nodes 130,
140, 150. In the illustrated example, a key may be cached
based on (1) whether updates corresponding to previously
sampled data from the nodes 130, 140, 150 have caused the
key to already be stored in the cache S and/or (2) an evaluation
of the update weight A of a sample corresponding to the key.
In the illustrated example of FIG. 1, the monitor 110 estimates
the number of open and/or active data connections of the
nodes 130, 140, 150 and/or any other nodes of the data com-
munication system 100 based on the keys stored in the cache
S and the corresponding cumulative weights of the cached
keys. In some examples, the monitor 110 additionally or
alternatively estimates other characteristics (e.g., number of a
particular type of data connection currently open, number of
data connections that have been opened for a particular length
of time, etc.) of the communication system 100 based on the
keys stored in the cache S. In some such examples, the char-
acteristics of the key are also stored in the cache S. The
cumulative weights of the keys are kept by a counter of the
monitor 110, as described below.

For example, in FIG. 1, the monitor 110 samples (e.g.,
randomly) a data stream including data from the nodes 130,
140, 150 to obtain a first update from the first node 130 with
an update weight indicating that one of the data connections
132 was opened. In this example, a key i is stored in the cache
S for the first node 130 and has an update weight A=+1. In this
example, the monitor 110 continues to sample the data stream
to obtain a subsequent update from the first node 130 with an
update weight indicating that another of the data connections
132 has become active. In this example, the subsequent
update weight A=+1, indicating that another connection has
opened at the first node 130, causes the monitor 110 to update,
for example, a data connection characteristic of the key i

US 9,116,958 B2

5

stored in the cache S for the first node 130 to have a value of
+2, indicating that two connections were opened for the net-
work node represented by the key 1.

FIG. 2 illustrates an example implementation of the
example monitor 110 of FIG. 1. In the illustrated example of
FIG. 2, the example monitor 110 includes an example sam-
pler 210, an example sample analyzer 220, an example
counter 230, an example cache 240, an example cache con-
troller 250, an example random number generator 260, and an
example estimator 270. An example communication bus 202
facilitates communication between the sampler 210, the
sample analyzer 220, the counter 230, the cache 240, the
cache controller 250, the random number generator 260, and
the estimator 270.

In the illustrated example of FIG. 2, an example data port
204 receives a stream of updates from the nodes 130, 140,150
and/or any other nodes monitored by the monitor 110 of FIG.
1. The example data port 204 receives the updates via a
wireless and/or wired connection. The example sampler 210
of FIG. 2 samples (e.g., randomly) updates from the stream of
updates. In the illustrated example, the sampler 210 forwards
a sample to the sample analyzer 220.

The example sample analyzer 220 of FIG. 2 determines
whether a sample is an update to key i based on identification
information included in the sampled update (i, A). For
example, the identification information may be a source or
destination address of a network packet that indicates that the
monitor 110 received the sampled update from one (or a
combination) of the nodes 130, 140, 150, 160 of FIG. 1.

In the illustrated example of FIG. 2, the sample analyzer
220 determines whether a key i corresponding to the sampled
update is stored in the cache 240. If the key i is stored in the
cache 240, then the sample analyzer 220 instructs the counter
230 to update a count ¢, associated with the key i. As such, the
example counter 230 of FIG. 2 maintains counts (c,) that track
the updates (A) made to the keys (i) stored in the cache 240.
For example, the key i uses a corresponding count c,. In the
illustrated example, if the key i is stored in the cache 240, the
counter 230 adjusts the count c; based on the weight A
(c,~—c+A) included in the sampled update.

Furthermore, assume that the sampled update is associated
with the first node 130 and, thus, the key being analyzed is the
key i representing the first node 130. In the illustrated
example, the count ¢; may not be equal to a true data connec-
tion value v, of the first node 130, which is two in the illus-
trated example of FIG. 1 (v,_, because two of the data con-
nections 132 are open). For example, the count ¢, may have a
value of “1”, while the true value v, has a value of “2” corre-
sponding to the two open data connections 132. The countc,
may not equal the true value v, because not every sample
update may be reflected in the keys stored in the cache S
because the sample updates are sampled based on a sampling
rate q=1/t, where T is a sampling threshold of the monitor. In
the illustrated example, only updates that are sampled for
storage in the cache S affect the count c;, while every update
to the node affects the true value v,.

In the illustrated example of FIG. 2, the counter 230 stops
maintaining the count c, for a key i when a negative weight A
from a sampled update causes its value to be equal to or less
than zero (i.e., ¢,.,) or when the counter 230 determines that
a negative weight A from a sampled update would cause the
count ¢, to drop to zero or less than zero (i.e., c,+A=0). Once
the counter 230 determines that the count c, is less than or
equal to (or, equivalently, no greater than) zero or would
become less than or equal to zero, the counter 230 instructs
the cache controller 250 to remove the key i from the cache
230. This allows the example monitor 110 to efficiently

5

10

15

20

25

30

35

40

45

50

55

60

65

6

handle signed updates, whether negative or positive, and
manage the number of samples stored in cache 240.

Inthe illustrated example of F1G. 2, if the key 1 is not stored
in the cache 240, then the sample analyzer 220 instructs the
cache controller 250 to determine whether the key 1 (includ-
ing associated characteristics) should be stored in the cache
250.

To perform such a determination, in some examples, the
cache controller 250 requests a random number from the
random number generator 260. The random number genera-
tor 260 generates a random number r based on the sampling
threshold t. For example, the random number generator 260
may use the sampling threshold t as the mean of a probability
distribution used to generate the random numbers provided to
the cache controller 250. The random number generator 260
provides the cache controller 250 with the random number r.

The example cache controller 250 of FIG. 2 receives the
random number r and compares it to the update weight A of
thekey i. If the random number r is less than the update weight
A, then the key i is added to the cache 240 and the count ¢, of
the key 1 is set to A-r by the counter 230. In the illustrated
example, subtracting the random variable r from the update
weight A accounts for any updates from the first node 130 that
were not sampled.

In some examples, if the cache controller 250 determines
that the key i is to be added to the cache 240, the cache
controller 250 removes an existing key stored in the cache 240
to make room for the new key i. In some such examples, the
cache controller 250 maintains a sampling threshold T, for the
keys stored in the cache 240. In the illustrated example, the
cache controller 250 adjusts the sampling thresholds for the
keys in the cache 240 using random numbers from the random
number generator 260 when it determines that a new key is to
be added. The example cache controller 250 then removes the
corresponding key with the lowest adjusted sampling thresh-
old T, as described below.

The example estimator 270 of FIG. 2 generates an estimate
of' the status of the data system 100 based on the keys stored
in the cache 240 and their corresponding counts stored in the
counter 230. In the illustrated example, the estimator 270
generates an estimate of the status of the data communication
system 100 (e.g., the number(s) and/or type(s) of open data
connections, the length(s) of time one or more connections
have been opened, etc.). In generating the estimate, the
example estimator 270 identifies the status of the keys i stored
in the cache 240 based on their associated counts c,. For
example, the estimator 270 may extrapolate the counts c, to
determine an estimate of the number of open data connections
for the data communication system 100.

In some examples, the estimator 270 makes an estimate of
a characteristic of the data communication system 100 (e.g.,
the current number of data connections using FTP, the num-
ber of data connections opened for at least an hour, the num-
ber of data connections currently opened to Europe, etc.). In
some such examples the characteristic to be estimated is
requested by an example user. In generating an estimate, the
example estimator 270 identifies the keys stored in the cache
240 that have the requested characteristic.

The estimator 270 of the illustrated example, calculates a
sum s representative of a characteristic based on the keys i in
the cache 240 that meet the corresponding characteristic
using the sampling threshold T and the corresponding counts
c,, such that s<—s+t+c, (Where s is reset to 0 before calculating
anew estimate corresponding to the requested characteristic).
The sum s is calculated from a sum of all keys in the cache 240
corresponding to the requested status (e.g., the number of
open data connections) and/or requested characteristic (e.g.,

US 9,116,958 B2

7

an estimate of the number of open data connections that have
been opened for a particular length of time) of the data system
100. In the illustrated example, the estimator 270 of FIG. 2
outputs the estimates s to a processor platform for further
processing and/or to the example user.

While an example manner of implementing the monitor
110 of FIG. 1 has been illustrated in F1G. 2, one or more ofthe
elements, processes and/or devices illustrated in FIG. 2 may
be combined, divided, re-arranged, omitted, eliminated and/
or implemented in any other way. Further, the example data
port 204, the example sampler 210, the example sample ana-
lyzer 220, the example counter 230, the example cache 240,
the example cache controller 250, the example random num-
ber generator 260, the example estimator 270 and/or, more
generally, the example monitor 110 of FIGS. 1 and/or 2 may
be implemented by hardware, software, firmware and/or any
combination of hardware, software, and/or firmware. Thus,
for example, any of the example data port 204, the example
sampler 210, the example sample analyzer 220, the example
counter 230, the example cache 240, the example cache con-
troller 250, the example random number generator 260, the
example estimator 270 and/or, more generally, the example
monitor 110 could be implemented by one or more circuit(s),
programmable processor(s), application specific integrated
circuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)), etc.
When any of the apparatus or system claims of this patent are
read to cover a purely software and/or firmware implementa-
tion, at least one of the example, the example data port 204,
the example sampler 210, the example sample analyzer 220,
the example counter 230, the example cache 240, the example
cache controller 250, the example random number generator
260, the example estimator 270 are hereby expressly defined
to include a tangible computer readable storage medium such
as a memory, DVD, CD, Blu-ray, etc. storing the software
and/or firmware. Further still, the example monitor 110 of
FIGS. 1 and/or 2 may include one or more elements, pro-
cesses and/or devices in addition to, or instead of, those
illustrated in FIGS. 1 and/or 2, and/or may include more than
one of any or all of the illustrated elements, processes and
devices.

Flowcharts representative of example machine readable
instructions for implementing the monitor 110 of FIGS. 1
and/or 2, and, in particular, the example data port 204, the
example sampler 210, the example sample analyzer 220, the
example counter 230, the example cache 240, the example
cache controller 250, the example random number generator,
and the example estimator 270, are shown in FIGS. 3, 4,
and/or 5. In these examples, the machine readable instruc-
tions comprise a program for execution by a processor, such
as the processor 612 shown in the example processor platform
600 discussed below in connection with FIG. 6. The program
may be embodied in software stored on a tangible computer
readable storage medium such as a CD-ROM, a floppy disk,
ahard drive, a digital versatile disk (DVD), a Blu-ray disk, or
a memory associated with the processor 612, but the entire
program and/or parts thereof could alternatively be executed
by a device other than the processor 612 and/or embodied in
firmware or dedicated hardware. Further, although the
example program is described with reference to the flow-
charts illustrated in FIGS. 3, 4, and/or 5, many other methods
of implementing the example monitor 110 may alternatively
be used. For example, the order of execution of the blocks
may be changed, and/or some of the blocks described may be
changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 3, 4,
and/or 5 may be implemented using coded instructions (e.g.,

35

40

45

50

65

8

computer readable instructions) stored on a tangible com-
puter readable storage medium such as a hard disk drive, a
flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage medium in
which information is stored for any duration (e.g., for
extended time periods, permanently, brief instances, for tem-
porarily buffering, and/or for caching of the information). As
used herein, the term tangible computer readable storage
medium is expressly defined to include any type of computer
readable storage device and/or storage disk and to exclude
propagating signals. Additionally or alternatively, the
example processes of FIGS. 3, 4, and/or 5 may be imple-
mented using coded instructions (e.g., computer readable
instructions) stored on a non-transitory computer readable
medium, such as a hard disk drive, a flash memory, a read-
only memory, a compact disk, a digital versatile disk, a cache,
arandom-access memory and/or any other storage medium in
which information is stored for any duration (e.g., for
extended time periods, permanently, brief instances, for tem-
porarily buffering, and/or for caching of the information). As
used herein, the term non-transitory computer readable stor-
age disk or storage device is expressly defined to include any
type of computer readable medium and to exclude propagat-
ing signals. As used herein, when the phrase “at least” is used
as the transition term in a preamble of a claim, it is open-
ended in the same manner as the term “comprising” is open
ended. Thus, a claim using “at least” as the transition term in
its preamble may include elements in addition to those
expressly recited in the claim.

Example machine readable instructions 300 that may be
executed to implement the monitor 110 of FIGS. 1 and/or 2
are represented by the flow chart shown in FIG. 3. In the
illustrated example of FIG. 3, at block 320 of FIG. 3, the
example sample analyzer 220 determines whether a sampled
update is associated with a key i stored in the cache 240. Inthe
illustrated example, the monitor 110 maintains the cache 240
of keys and associated counts c, using counter 230. The
example monitor 110 uses a sampling rate =1/t to determine
a number of keys in the cache 240 and/or when to add or
remove a new key to the cache 240. In the illustrated example,
if the sample analyzer 220 determines that the sampled
update is associated with a key i stored in the cache 240, then
control moves to block 330. In the illustrated example, the
sample analyzer 220 determines whether the sampled update
is associated with a key i in the cache 240 by identifying a key
identifier (e.g., such as an address of a network node, an
identifier of a customer (e.g., a name, a social security num-
ber, etc.), etc.) in the sampled update. The example sample
analyzer 220 then cross-checks the cache 240 for one or more
stored key(s) associated with the sampled update.

Atblock 330, the sample analyzer 220 instructs the counter
230 to adjust the count ¢, associated with the corresponding
key i based on the update weight A of the update sample. For
example, the update weight A can correspond to a +1 if the
sampled update corresponds to a sampled message indicating
that a connection has been opened at the first node 130 of F1G.
1, or can correspond to a -1 if the sampled update corresponds
to a sampled message indicating that an existing connection
has been closed at the first node 130. Accordingly, the counter
230 adds the update weight A to the count ¢, (c,<—c,+A). In the
illustrated example, if the adjusted count c; is less than or
equal to zero, at block 350, the counter 230 instructs the cache
controller 250 to remove the key 1 from the cache 240. In such
examples, the key i is removed to allow room in the cache 240
for other keys. After blocks 340 and/or 350, control moves to
block 355 of FIG. 3.

US 9,116,958 B2

9

In the illustrated example, if the adjusted count ¢, is greater
than zero, at block 340, the counter 230 maintains the corre-
sponding adjusted counts c, for use by the estimator 270 (at
block 360 described below) in generating an estimate of the
status and/or characteristic of the data communication system
100.

Returning to block 320 of FIG. 3, if the sampled update is
not associated with a key stored in the cache 240, then the
sample analyzer 220 instructs the cache controller 250 to
determine whether sampled update is to cause a key associ-
ated with the sample to be added to the cache 240 and control
moves to block 370. At block 370, as further described herein
with respect to FIGS. 4 and/or 5, the cache controller 250
determines whether to add a key corresponding to the
sampled update to the cache 240. If the cache controller 250
determines that the key is to be added to the cached set of
keys, at block 380, the cache controller 250 adds the key
corresponding to the sampled update to the cache 240. After
block 370 and/or 380, control moves to block 355.

In the illustrated example of FIG. 3, the monitor 110 deter-
mines whether an estimate is to be calculated at block 355. In
some examples, a default setting determines whether or not
an estimate is to be calculated for each sampled update. In
some examples, a user requests an estimate for the status of
the example system and/or an estimate for a characteristic of
the data communication system 100.

In the illustrated example, the monitor 110 uses the keys i
in the cache and their associated counts ¢, to make the esti-
mate at block 360 of FIG. 3. The example estimator 270
estimates the status (e.g., the number of open data connec-
tions) and/or one or more characteristic(s) (e.g., a number of
aparticular type (e.g., FTP) of data connection to a particular
country, etc.) of the data communication system 100. In the
illustrated example, to estimate the example status of the data
communication system 100, the example estimator 270 esti-
mates the number of open data connections based on the
counts ¢, of the keys stored in the cache 240. In the illustrated
example, to make an estimate of the characteristic(s), the
estimator 270 identifies the keys stored in the cache 240 that
have the corresponding characteristic(s) and uses those keys
to generate an estimate. In the illustrated example, the esti-
mator generates a sum s of the open data connections or those
data connections having the corresponding characteristic
based on the keys stored in the cache 240, their corresponding
counts kept in counter 230, and the sampling threshold <,
where s<—s+t+c,. The sum s corresponds to an estimate of the
status (e.g., number of open data connections) of the data
communication system 100 and/or an estimate of the corre-
sponding characteristic(s) (e.g., number of open data connec-
tions to a region outside of the country).

FIG. 4 illustrates first example machine readable instruc-
tions 400 that may be executed to implement the block 370 of
FIG. 3. The example monitor 110 executes the instructions
400 to determine whether a sampled update corresponding to
akey that is not stored in the cache 240 should be added to the
cache 240. Atblock 410, the cache controller 250 retrieves the
sampling rate from the sampler 210. The cache controller 250
inverts the sampling rate to determine the sampling threshold
T. The cache controller 250 provides the sampling threshold
to the random number generator 260.

Atblock 420, the cache controller 250 instructs the random
number generator 260 to generate a random number r based
on the sampling threshold . In the illustrated example, ran-
dom numbers r generated by the random number generator
260 at block 420 are exponentially distributed with a mean
substantially equal to the sampling threshold t. The random

20

30

40

45

10

number generator 260 provides the cache controller 250 with
the random number r at block 420, and control moves to block
430.

At block 430 of FIG. 4, the example cache controller 250
determines whether the generated random number r is less
than the update weight A associated with a next data sample in
the data stream being monitored by the data port 204. In the
illustrated example, a random number r that is less than the
update weight A (r<A) indicates that the update weight is
positive. However, if the random number r is greater than or
equal to the update weight A (rzA), the update is considered
insignificant and/or a negative update. In the illustrated
example, if the random number r is not less than the update
weight A, then control moves to block 440. At block 440 of
FIG. 4, a decision is made to not add a key corresponding to
the data sample to the cache 240.

In the illustrated example, at block 430 of FIG. 4, if the
random number r is less than the update weight A, then
control moves to block 450. At block 450, a decision is made
to add a key i corresponding to the sampled update to the
cache 240. Additionally, the counter 230 adjusts the count c,
for the key 1 added to the cache 240 based on the update
weight A and the random number r, such that c,«<~A-r. Adjust-
ing the count c; to include the random variable r accounts for
any prior updates for the key i that may not have been sampled
by the sampler 210.

The example machine readable instructions 300, 400 of
FIGS. 3 and/or 4 may be represented by the following proce-
dures:

1: procedure UPDATE (i,A)

2: ifieSthen

3: c;<c;+A

4: if ¢; = 0 then

5: S« S\ {i}

6: else

7: r < Exp,

]: ifr<Athen

9: S«—SU{i},c;<A-1
10: procedure SUBSETSUMEST(P)
11: s<0
12: forieSdo
13: if P(i) then
14: S<S+T+c;
15: return s

In the examples described herein, a key 1 is associated with
acount c,. For keys i that are not stored in the cache 240 (i¢S)
the count ¢, is equal to zero (c,_,). In some examples, the
distribution of the count ¢, of the key i (e.g., corresponding to
the first node 130) depends on a true value v, of the first node
130 (e.g., the actual number of open data connections at the
first node 130).

It can be shown by the following that in the examples
presented herein, if the random number generator 260
employs an exponential distribution with mean T to generate
a random number r, the distribution of ¢, for a key i with a
value v, is:

[v~Exp.]* M

where Exp, is a random variable exponentially distributed
with mean T (e.g., the random number r), where T is the
sampling threshold. In the above equation, the notation [x]*
indicates a function max{x,0}.

The distribution of the count c, is determined based on
changes in the count ¢, in response to updates of the value v,.
For example, assuming a fixed key 1 and the set of n updates
being {A,,;m=0, 1,2, ...} then the corresponding values v,
arev g =0and v, 1,7+, " Insuch examples, the value

US 9,116,958 B2

11

v, at a given time is the cumulative result of updates for a
corresponding key (e.g., the first node 130) that have occurred
up to that time. For example, if all four connections are
initially closed for the first node 130, then if two connections
open (A,=+2), followed by one of those connections closing
(A,_,), the value v, of the first node 130 at that given time is
plus one (v;=0+2-1=+1).

In the illustrated example, based on the instructions 300 of
FIG. 3, the corresponding counts c, are ¢,,=0 with

@

where the elements of the set of Expy,,({Exp,:n=0, 1,
2, ... }) are independent and identically distributed random
variables of the mean T, and I is an indicator function (i.e.,
where [(X)=1 if the condition X is true, and I(X)=0 if the
condition X is false). When the count value is equal to zero,
¢=0, in the illustrated example, the corresponding count ¢ is
not maintained for the key in question (i.e., the key i is not in
the cache 240). In particular, when the count c,,,,=0, the
counter 230 does not maintain a count ¢ for this key prior to an
update A ;. In the illustrated example, taking a positive part
[cp+An]™ ensures that when the update A, yields a non-
positive count value, that count ¢, and corresponding key i is
removed from the cache 240.

In some examples, for each update n=0, 1, . . . , of a
particular count ¢c,=c

C(n+l):I(C(n)>0)[C(n)+A(n)]++I(C(n):0) [A(n)_EXp(n)]+

®
where =7 denotes equality in distribution, and Exp is an expo-
nential random variable of mean T independent of
{Exp,,yn'=n}. Assuming the condition in equation (3) is
valid, then the count c,,,, by equation (2) yields &,,,, as
follows:

C(n):d[V(n)—EXP]+

Conr1y=Conr1y IV EXP)[Viry=Exp+A]+
Iy =Exp)[Agy~Expen] ™ 4)

In the such examples,

®
where Exp' is an independent copy of Exp. When v, +A,,<0
then c', . 1):§(M+ }):0.. When V.(n)+A(n)>0, the complf:mentary
cumulative distribution function (CCDF) of ¢, ,, is (where
Pr[X] denotes the probability of X):
Priciny > 2] = PriBxp < [y + Ag) — 217D

o | _d \
Conr = C s 1y [[V(n)+A(n)]+—EXP]+

©

=1 —ePortbmA"/ for 72 0.

The CCDF of &, ,, can be derived from equation (5) as

PrfCg,,1y>z] =Pr{Exp<min{ve,, Vo +Aon—2] 1]+
Pr v,y =Exp]PrEXp,y<[Apy-2]"]

M
When A<z, the first term in equation (6) is
PrExp<[von+Aey=z]]=Pr[C 1y >2] (8)

and the second term is zero. When A2z, then
Pr{€eeny > 2] = PriExp < vgy)] + PrExp 2 v IPrExpg,y <A -2l)]

=(1- e/ I+ e/ (1 o=/ 9

— 1 - e loraem-dfr

— 1 — e Mooy

= Prlclu) > 2l

10

25

30

35

40

45

50

55

60

65

12

From Equation (1), the distribution of the counter c,
depends on the true value v,, and can be represented by a
truncated exponential distribution when the random number
generator 360 employs an exponential distribution to gener-
ate its random number. Accordingly, the above example pro-
cesses executed by the sampling instructions 300 of FIG. 3 is
similar in distribution to a sampling procedure where each
key i is unique, and occurs once with value v,. Therefore, in
the foregoing examples, unbiased estimators for subset sums
s of the cache 240 can be provided.

In some examples, each key is assigned an adjusted weight
¥,, which is equal to the sampling threshold plus the corre-
sponding count (t+c,), if the sample 1 is stored in the cache
240 (i€8), and zero (¥,_) if it is not stored in the cache 240.
Using the convention c,_, for deleted counts, this can be
expressed succinctly as

9,=I(c>0){e). (10)

In the illustrated example above, the estimator 270 esti-
mates a subset sum X, v, using the subset sum X, 5,\¥,, the
latter being the sum of adjusted weights of samples in the
cache 240 which satisfy P, wherein P is the status and/or
characteristic which the keys should have to be included in the
estimate (e.g., being one of the nodes within the data system
100, a member of a group to be monitored or analyzed, the
number of data connections that have been opened for a given
period of time, etc.). Accordingly, the adjusted weigh ¥, is an
unbiased estimate of the true value v,, as described below.

In some examples, the update weight A is a unit update, i.e.
where each update weight A is either +1 or -1 (AS{-1,+1}).
In some such examples, the monitor 110 uses a variant of the
foregoing examples where the example comparison of the
update weight A against an exponential distribution succeeds
only when A=+1, and does so with probability g=1/t, where t
is the sampling threshold. In such examples, the count c, for
the key i is initialized to zero, ¢,_,. Further, the count ¢, is an
integer and may be initialized with value greater than zero
(C,20) Or uninitialized (when the key is not cached). Accord-
ingly, if akey i is in the cache 240, then the key remains in the
cache 240 if a subsequent sampled update associated with the
key i does not decrement the count ¢, (i.e., the subsequent
sampled update does not have a weight A=-1). Accordingly,
“paired off”” increments are erased by decrements, leaving the
value v, from the “unpaired” increments. In the illustrated
example, the key i remains in the cache 240 if it is sampled
during an example unpaired increment. Therefore, the
example key 1 has count ¢, with probability q(1-q)** <, rather
than being sampled with probability (1-q)**

In the preceding examples, the distribution of a final count
¢, depends on v,. For example, the probability that the key iis
cached at termination is 1-exp(—v,/t). In these examples,
with the presence of negative updates in the update stream, a
key i may be cached at some point during the execution of the
instructions 300 of FIG. 3 and subsequently ejected. The key
i is not cached if the independent exponential random vari-
ables r all exceed their corresponding update A .

In the foregoing examples, the probability that the key i is
cached at some point during the execution of the instructions
300 of FIG. 3 is 1-exp(-ZA*(i)/t), where ZA*(1)=2,max{0,
A} is the sum of positive updates for the key i.

In some examples, when ZA*(i)<<z, the probability that a
key gets cached is small (approximately ZA*(i)/t). Accord-
ingly, the probability that the key is cached at termination
is =v,/t. Summing over all samples, a worst-case cache utili-
zation (which is observed after all negative updates occur at
the end), is the ratio of the sum of positive updates to the sum
of values, ZA*(i):v,.

US 9,116,958 B2

13

In some examples, the cache controller 250 bounds the
cache 240 to a fixed number of k samples. Example
approaches disclosed herein bound the number of cached
samples to k by effectively increasing the sampling threshold
T for a key i. In some examples, the cache controller 250
increases the sampling threshold t, to a new sampling thresh-
old t,, where T,>t,. Assuming a given key i, the process
achieves substantially the same distribution as if the sampling
threshold had always been T, (rather than originally T,). In the
illustrated example, with a probability q=t,/t,, no change is
made to the count ¢;; otherwise, the count c, is reduced based
on a random number variable r having an exponential distri-
bution with mean ;. If the count ¢, is less than zero (¢;<0), the
key iis removed from the cache 240.

As an example, let c=0, O=t,,T,, u be a random variable
uniformly distributed in (0,1), and Exp_ be an exponential
random variable of mean T, independent of u. Accordingly, a
random variable 0 is defined as:

O(cvow)=lut >To)[c-Exp, " +(uw sT0)c

an

where 0(c,T,,T;)=c when T, =<7, In this example, the follow-
ing procedure replaces the count ¢, with the value ©(c,,t,,T,)
if this value is positive. If the value ©(c,,T,,T,) is not positive,
the cache controller 250 removes the key 1 from the cache 240.

The sampling threshold T may be increased according to
the example methods disclosed herein using the following
procedure:

Require: T; > Ty, 1 €S
1: procedure SAMPTHRESHINC (i, ¢;, T, T;)
2: u<rand ()

3: . T
if 7; > — then
u

4: z < rand ()

5: 1< (-In(z));

6: c;e¢c;— T

7. ifc;s Othen S < S\ {i}

In the above foregoing example, replacing the count ¢, with
the defined random variable 6 preserves unbiasedness. In
particular, the distribution of the updated count ¢, under 0 is
substantially equivalent to a fixed-rate Sample and Hold pro-
cedure with a sampling threshold t,.

In the illustrated example, letting O=<t,<t; and ¢&=0(c,T,,
T,), yields:

E[I(¢>0)(é+T))lc]=c+Tq (D

@

where E[X] denotes an expectation function. The above esti-
mate (1) is found by calculating the following:

ifC:d[v—EXp10]+, then Ezd[v—EXpn]*

E[1(5>0)(5+rl)|c]=(1—To/rl)f’”rl c-x+rpdrs 12
”

(to/T1)(c+71)

=(l-7o/T)c+ (to/T)(c+T1))

=c+7g
To determine the above distribution (2), let c:"][V—Expto]+
and the variable ©(c,t,,T,) can be written as [v—W]* where

W=I(T,u>T0) (BXp ot Expy)+ (T,=T0) EXp. . (13)

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Accordingly, a direct computation of convolution of distri-
butions shows that Exp, +Exp, has distribution function
x— (T, Exp, (X)-t,Exp, (x))/(t,~To). To this end, using
Pr[t,u>t;-, =T,/T,, then a distribution for W can be found as
follows:

W(x) = Pritiu > To](ExPro + Exprl)(x) + (14)

Pritiu < ‘z'o]Exprl (x)

= Expy (x)

FIG. 5 illustrates second example machine readable
instructions 500 that may be executed to implement the block
370 of FIG. 3. The example monitor 110 executes the instruc-
tions 500 to determine whether a key (e.g., for a sampled
update being evaluated) that is not stored in the cache 240
should be added to the cache 240. If the example monitor 110
determines that the key is to be added to the cache 240, the
example monitor 110 also removes a key from the cache to
maintain a bounded number of k samples.

In the illustrated example of FIG. 5, for each cached key i
in the cache 240, a respective count ¢, is stored in the counter
230 and a respective sampling threshold T, is maintained by
the cache controller 250. In the illustrated example, the sam-
pling threshold 7, is set to a sampling threshold in force during
a most recent update A of the corresponding key i. In some
examples, the sampling threshold T, is adjusted upward due to
a removal of another key from the cache 240, as described
below.

At block 510 of FIG. 5, the example cache controller 250
determines whether the update weight A for the key i is
positive (A>0). If the update weight A is not positive, control
moves to block 520. Atblock 520 of FIG. 5 a decision is made
not to add a key i corresponding to the sampled update to the
cache 240.

In the example of FIG. 5, if the update weight A is positive,
control moves to block 530. At block 530, the example cache
controller 250 sets the sampling threshold T, to zero (t,._,)
and the example counter 230 sets the count ¢, equal to the
update weight A (c,<~A). Accordingly, in the illustrated
example, the key i will be added to the cache 240 with a
corresponding sampling threshold of zero maintained by the
cache controller 250 and a count equal to the update change
stored in the counter 230.

Atblock 540 of FIG. 5, the cache controller 250 determines
the number of keys stored in the cache 240, and whether that
number exceeds the maximum number of k keys. If cache
controller 250 determines the number of samples is equal to
or less than the maximum number of k keys (IS|<k), control
moves to block 550. At block 550 of FIG. 5, a decision is made
to add a key i corresponding to the sampled update to the
cache 240 and that no other keys need to be removed from the
cache 240.

In the example of FI1G. 5, if the cache controller 250 deter-
mines the number of keys stored in the cache 240 is greater
than the maximum number ofk keys (1SI>k), control moves to
block 560. At block 560 of FIG. 5, key is removed from the
cache 240, as described below. Also, at block 560,a decision
is made to add a key i corresponding to the sampled update to
the cache 240 and another key that is different from key i is
removed from the cache 240 based on a newly calculated
sampling threshold T,.

The example machine readable instructions 300, 500 of
FIGS. 3 and/or 5 may be represented by the following proce-
dures:

US 9,116,958 B2

15
1: procedure UPDATE (i, A)
2: ifi €S then
3: c;<c;+A
4: ifc; = 0 then
5 S« S\ {i}
6: else if A>0 then
7 S« SU{i},T;< 0,c;< A
8: if S1=%+1 then
9: EJECTONE(S)
10: procedure SUBSETSUMEST(P)
11: s<0
12: fori€ESdo
13: if P(i) then
14: S« S+T;+¢C;
15: return s
16: procedure EJECTONE(S)
17: fori€Sdo
18: u; < rand(), z; < rand()
19: T ci
Tie max{u‘_ ’ —log(z;)}
20 T* < mingegT;
21: fori€Sdo
22: ifT,=v*then S < S\ {i}
23: else
24: ifT; < v* then
25: if t* u; >7; then
26: c; = c;+T*logz;
27: T, < T

In the preceding example, when the cache 240 is not full, a
new key i is admitted with a sampling threshold <, equal to
zero (T,—y). In such examples, when the cache 240 is full, such
that the cache 240 contains k keys, a new key is provisionally
admitted (such that the cache 240 now has k+1 keys), and at
block 560 one of the k+1 keys in the cache 240 is selected to
be removed. In the example above, the procedure
ExcTONE(S) adjusts a minimum sampling threshold ©* to a
lowest value for which one key will be removed from the
cache 240. The example procedure to adjust the minimum
threshold t* is based on the effects of increasing the sampling
threshold (e.g., using random variable 0, described herein) on
the count c,, fixing an independent randomization of variates
u,, 7, for each 1, and finding the smallest threshold ©* for which
¢,=0(c,,T,;t*)=0 for some i. In this example, this key is
removed, while thresholds of keys remaining in the cache 240
are adjusted as (c,,T,)<—(&,,t*) if the sampling threshold 7, is
less than or equal to the minimum sampling threshold
T*(T,=t*). In some examples, if the sampling threshold <, for
key i is greater than the minimum sampling threshold ©*
(T >1*), then the count ¢, and sampling threshold <, are not
changed.

In the foregoing example, it can be shown by the following
that the estimated weight ¥, remains unbiased under the action
of the removal procedure described above (EEcTONE(S)).
This can be demonstrated by assuming a key 1, fixing a count
¢, and fixing for j=i the random variates u,, z, to fix the effect
of random past selections and updates. Further, fixing
T~max{t/u,c/(-log z,)} and T=min, T, and updating the
count ¢, to &,=0(c,,T,,T') establishes that V,=I(¢,>0)(¢,+T") is a
(conditionally) unbiased estimator of v, for any fixed t' as
described below.

In the foregoing example, the count &, corresponds to the
action on the count ¢, described with respect to increasing the
sampling threshold t,, as described herein, and can be found
to be:

&=I(vu>v,)[c,-Exp] +H(T'ust))c;

s)
where Exp.. is equivalent to —t' log z,. When T,<t', corre-
sponding to a case where {t">t,/u,} N{t™>c/(-logz,)}, thekey
iis selected by the cache controller 250 to be removed from

10

15

20

25

30

35

55

60

65

16

the cache 240. This corresponds to the case where {t>t,/
u,}N{t>c/(-log z,)}. When t>t,/u,, the first term in the
above expression for &, is selected, whereas when t'>c,/(-log

Z,), the count ?i is set to zero (¢,_,) and the corresponding key
iis removed from the cache 240. If T,=7, the first or second
term in the expression for ¢, may be selected, but both cannot
be equal to zero.

Let the value ¥, denote the estimate of v, based on

— . .
¢ =0(c,,T;,T'). Then, from the discussion above

Efo 0 c>0]=E[I(70) (@A) c~0] =c, (16)

independent of T, and, therefore, E[¥,]=E[I(c,>0)(c,+T,)|=V,.
In some examples, when ¢,=“[v,~Exp,]*, the unbiased esti-
mate ¥,=I(c,>0)(c,+t,) has variance:

Var[#,]=v A(1-e 7). 17

Moreover, Var[¥,] itself has an unbiased estimator s,> that
does not depend explicitly on the value v;:

s2=Ic >0y 2. (18)

In the illustrated example, for a key in the cache 240,
uncertainty concerning v, is determined by the estimated
unsampled updates, which are exponentially distributed with
mean T, and variance T,%. Accordingly, both Var[¥,] and s,* are
increasing functions of T,

In some examples, the estimated variance with a given key
is non-decreasing while the key 1 is stored in the cache 240,
then drops to zero when the key i is removed from the cache
240, but may increase after further updates for that key i are
sampled by the sampler 210. In such examples, because s, is
increasing in T,, an upper bound on the variance is obtained
using the maximum threshold t* encountered over all
instances of the keys stored in the cache 240 analyzed during
the removal procedure (EEcTONE). The example maximum
threshold T* may be reached because a key i processed by the
removal procedure gives rise to the largest sampling threshold
T associated with each particular key in the cache 240.

In some examples, an overwrite streams model may be
implemented, where an update of the form (i,v) means that the
weight associated with key 1 is updated to v. In this example,
the update (1,0) corresponds to a deletion of the key. This
example captures the notion of “updating” information about
a sample.

In the overwrite streams example, for sampling at a con-
stant rate q=1/t, if the sampler 210 samples an update for a
key 1 which is already stored in the cache 240, the key i is
removed from the cache 240. In some such examples, an
independent determination can be made by the cache control-
ler 250 whether to retain the current key i based on its weight
v and the sampling threshold T. In such examples, correctness
(i.e. that the sampling is distributed as a Poisson sample on the
final values for each key) is immediate. In some examples, a
removal procedure similar to ErecTONE may be implemented
based on a corresponding sampling threshold T, to account for
depletion of the cache 240 due to overwrites and/or exceeding
the cache limit (k) due to never before sampled updates.

FIG. 6 is ablock diagram of an example processor platform
600 capable of executing the instructions of FIGS. 3, 4 and/or
5 to implement the monitor 110 of FIGS. 1 and/or 2. The
processor platform 600 can be, for example, the monitor 110,
a server, a personal computer, a mobile phone (e.g., a cell
phone), a personal digital assistant (PDA), an Internet appli-
ance, a set top box, or any other type of computing device.

The processor platform 600 of the instant example includes
a processor 612. For example, the processor 612 can be
implemented by one or more microprocessors or controllers
from any desired family or manufacturer.

US 9,116,958 B2

17

The processor 612 includes a local memory 613 (e.g., a
cache) and is in communication with a main memory includ-
ing a volatile memory 614 and a non-volatile memory 616 via
abus 618. The volatile memory 614 may be implemented by
Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS
Dynamic Random Access Memory (RDRAM) and/or any
other type of random access memory device. The non-volatile
memory 616 may be implemented by flash memory and/or
any other desired type of memory device. Access to the main
memory 614, 616 is controlled by a memory controller.

The processor platform 600 also includes an interface cir-
cuit 620. The interface circuit 620 may be implemented by
any type of interface standard, such as an Ethernet interface,
a universal serial bus (USB), and/or a PCI express interface.

One or more input devices 622 are connected to the inter-
face circuit 620. The input device(s) 622 permit a user to enter
data and commands into the processor 612. The input de-
vice(s) 622 can be implemented by, for example, a keyboard,
a mouse, a touchscreen, a track-pad, a trackball, isopoint
and/or a voice recognition system.

One or more output devices 624 are also connected to the
interface circuit 620. The output devices 624 can be imple-
mented, for example, by display devices (e.g., a liquid crystal
display, a cathode ray tube display (CRT), and/or speakers).
The interface circuit 620, thus, typically includes a graphics
driver card.

The interface circuit 620 also includes a communication
device (e.g., the data port 204 of FIG. 2) such as a modem or
network interface card to facilitate exchange of data with
external computers via a network 626 (e.g., an Ethernet con-
nection, a digital subscriber line (DSL), a telephone line,
coaxial cable, a cellular telephone system, etc.).

The processor platform 600 also includes one or more mass
storage devices 628 for storing software and data. Examples
of such mass storage devices 628 include floppy disk drives,
hard drive disks, compact disk drives and digital versatile disk
(DVD) drives. The mass storage device 628 may implement
the cache 240.

The coded instructions 632, which may implement the
coded instructions 300, 400, 500 of FIGS. 3, 4, and/or 5, may
be stored in the mass storage device 628, in the volatile
memory 614, in the non-volatile memory 616, and/or on a
removable storage disk such as a CD or DVD.

From the foregoing, it will appreciate that the example
methods, apparatus and articles of manufacture have been
disclosed to enable sampling of weighted updates, whether
positive or negative.

At least some of the above described example methods
and/or apparatus are implemented by one or more software
and/or firmware programs running on a computer processor.
However, dedicated hardware implementations including,
but not limited to, application specific integrated circuits,
programmable logic arrays and other hardware devices can
likewise be constructed to implement some or all of the
example methods and/or apparatus described herein, either in
whole or in part. Furthermore, alternative software imple-
mentations including, but not limited to, distributed process-
ing or component/object distributed processing, parallel pro-
cessing, or virtual machine processing can also be
constructed to implement the example methods and/or appa-
ratus described herein.

To the extent the above specification describes example
components and functions with reference to particular stan-
dards and protocols, it is understood that the scope of this
patent is not limited to such standards and protocols. For
instance, each of the standards for Internet and other packet

10

15

20

25

30

35

40

45

50

55

60

65

18

switched network transmission (e.g., Transmission Control
Protocol (TCP)/Internet Protocol (IP), User Datagram Proto-
col (UDPYIP, HyperText Markup Language (HTML),
HyperText Transfer Protocol (HTTP)) represent examples of
the current state of the art. Such standards are periodically
superseded by faster or more efficient equivalents having the
same general functionality. Accordingly, replacement stan-
dards and protocols having the same functions are equivalents
which are contemplated by this patent and are intended to be
included within the scope of the accompanying claims.

Additionally, although this patent discloses example sys-
tems including software or firmware executed on hardware, it
should be noted that such systems are merely illustrative and
should not be considered as limiting. For example, it is con-
templated that any or all of these hardware and software
components could be embodied exclusively in hardware,
exclusively in software, exclusively in firmware or in some
combination of hardware, firmware and/or software. Accord-
ingly, while the above specification described example sys-
tems, methods and articles of manufacture, the examples are
not the only way to implement such systems, methods and
articles of manufacture. Therefore, although certain example
methods, apparatus and articles of manufacture have been
described herein, the scope of coverage of this patent is not
limited thereto. On the contrary, this patent covers all meth-
ods, apparatus and articles of manufacture fairly falling
within the scope of the claims either literally or under the
doctrine of equivalents.

What is claimed is:

1. A method comprising:

identifying, via a processor, a first key associated with a

data update obtained by sampling a stream of data
received from a plurality of nodes in a network, the first
key being representative of a first node in the plurality of
nodes;

adjusting, viathe processor, a first value associated with the

first key based on a weight associated with the data
update to determine a first adjusted value, the weight
being positive when the data update corresponds to
opening of a new data connection with the first node, the
weight being negative when the data update corresponds
to closing of an existing data connection with the first
node; and

estimating, via the processor, a status associated with the

plurality of nodes based on the first adjusted value.

2. The method according to claim 1, further comprising:

determining a characteristic of the first key,

storing the characteristic of the first key in the cache, and

estimating a status of the network based on the character-

istic of the first key.

3. The method according to claim 1, further comprising
caching a plurality of keys representing a subset of the plu-
rality of nodes in a cache.

4. The method according to claim 3, wherein the plurality
of'keys have respective values representing respective num-
bers of active data connections of the subset of the plurality of
nodes.

5. The method according to claim 3, further comprising
removing the first key from the cache if the first adjusted value
is not greater than zero.

6. The method according to claim 3, further comprising
adjusting a first sampling threshold corresponding to the key
based on a number of keys to be maintained in the cache by
eliminating a second key from the cache based on a second
sampling threshold corresponding to the second key.

US 9,116,958 B2

19

7. The method according to claim 1, further comprising
estimating the status of the network based on the status of the
plurality of nodes.

8. An apparatus comprising:

ahardware memory to store machine readable instructions;

and

a processor to execute the instructions to perform opera-

tions comprising:
identifying a first key associated with a data update
obtained by sampling a stream of data received from a
plurality of nodes in a network, the first key being rep-
resentative of a first node in the plurality of nodes;

adjusting a first value associated with the first key based on
a weight associated with the data update to determine a
first adjusted value, the weight being positive when the
data update corresponds to opening of a new data con-
nection with the first node, the weight being negative
when the data update corresponds to closing of an exist-
ing data connection with the first node; and

estimating a status of the plurality of nodes based on the

first adjusted value.

9. The apparatus according to claim 8, wherein the opera-
tions further comprise: determining a characteristic of the
first key, storing the characteristic of the first key in the cache,
and estimating a status of the network based on the charac-
teristic of the first key.

10. The apparatus according to claim 8, wherein the opera-
tions further comprise caching a plurality of keys represent-
ing a subset of the plurality of nodes in a cache.

11. The apparatus according to claim 10, wherein the plu-
rality of keys have respective values representing respective
numbers of active data connections of the subset of the plu-
rality of nodes.

12. The apparatus according to claim 10, wherein the
operations further comprise removing the first key from the
cache if the first adjusted value is not greater than zero.

13. The apparatus according to claim 8, wherein the opera-
tions further comprise adjusting a first sampling threshold
corresponding to the key based on a number of keys to be
maintained in the cache by eliminating a second key from the
cache based on a second sampling threshold corresponding to
the second key.

10

15

20

25

30

35

40

20

14. The apparatus according to claim 8, wherein the opera-
tions further comprise estimating the status of the network
based on the status of the first node.
15. A hardware memory comprising instructions which,
when executed, cause a machine to perform operations com-
prising:
identifying a first key associated with a data update
obtained by sampling a stream of data received from a
plurality of nodes in a network, the first key being rep-
resentative of a first node in the plurality of nodes;

adjusting a first value associated with the first key based on
a weight associated with the data update to determine a
first adjusted value, the weight being positive when the
data update corresponds to opening of a new data con-
nection with the first node, the weight being negative
when the data update corresponds to closing of an exist-
ing data connection with the first node; and

estimating a status of the plurality of nodes based on the

first adjusted value.

16. The hardware memory defined in claim 15, wherein the
operations further comprise: determining a characteristic of
the first key, storing the characteristic of the first key in the
cache, and estimating a status of the network based on the
characteristic of the first key.

17. The hardware memory according to defined in claim
15, wherein the operations further comprise caching a plural-
ity of keys representing a subset of the plurality of nodes ina
cache.

18. The hardware memory defined in claim 17, wherein the
plurality of keys have respective values representing respec-
tive numbers of active data connections of the subset of the
plurality of nodes.

19. The hardware memory defined in claim 17, wherein the
operations further comprise removing the first key from the
cache if the first adjusted value is not greater than zero.

20. The hardware memory defined in claim 15, wherein the
operations further comprise adjusting a first sampling thresh-
old corresponding to the key based on a number of keys to be
maintained in the cache by eliminating a second key from the
cache based on a second sampling threshold corresponding to
the second key.

